Just a T.A.D. (Traffic Analysis Drone)

Senior Design Project 2017: Final Project Review

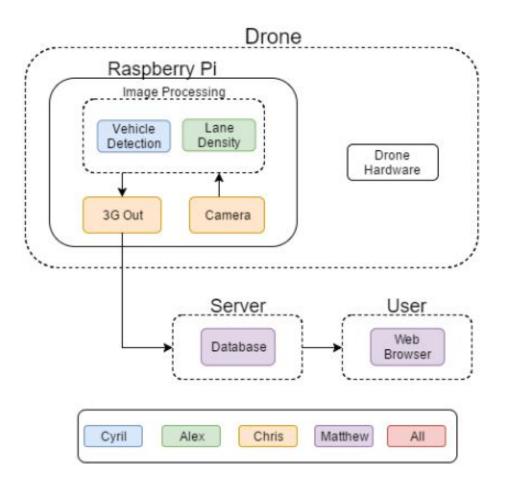
Department of Electrical and Computer Engineering

Meet the Team

Cyril Caparanga (CSE)

Alex Dunyak (CSE)

Christopher Barbeau (CSE)
Matthew Shin (CSE)



Recap

- Traffic data needs to be more comprehensive as more and more cars are on the roads
- Current traffic data collection methods are expensive and/or insufficient
- An Unmanned Aerial Vehicle (UAV) can be used to provide aerial image and video
- Image processing will analyze the image/video for car density and spacing on the drone
- This data is sent to a server in the cloud for display

Block Diagram - FDR

CDR Deliverables

- Alex/Cyril: Image processing
 - ✓ Identifies visible cars in own test images
 - Calculates density of cars as cars per distance or as car to road ratio
 - Integrate server
 - ✓ Integrate camera
- Matt: Data Server
 - Automatically update web app to display most recent database content
 - ✓ Assemble and test the 3DR Iris+
- Chris: Raspberry Pi
 - Camera interfaces with image processing software
 - imes Send image data to server via 3G

FPR Deliverables

- Alex/Cyril
 - Alex: Completion and debugging of software
 - Cyril: Finalize integration of software with camera and sending to server
- Matt
 - Become proficient in piloting the drone for demo
 - Test and develop web application
- Chris
 - \times DroneKit integration
 - imes 3G integration (or WiFi)

DroneKit and Autopilot

- Difficult to interface with drone's flight controller due to preexisting hardware
- Has easy to interface autopilot via Android or Windows app
- App contains necessary metrics
 - Latitude
 - Longitude
 - Yaw
 - Altitude

New algorithm

Previous algorithm far too performance intensive to run on Raspberry Pi.

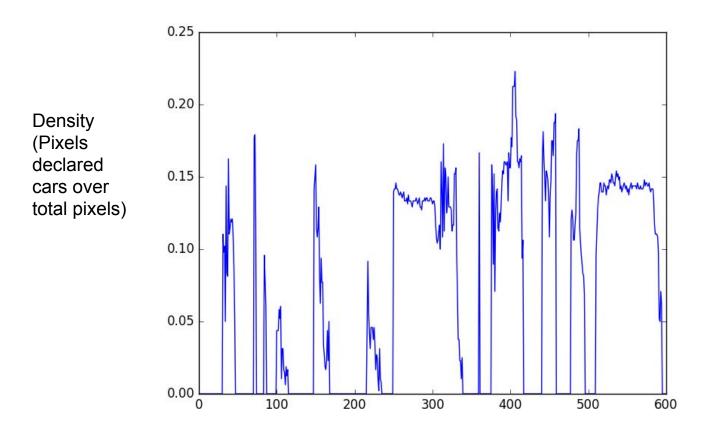
- Simpler idea: find the lane, and iterate over a line through the lane, finding both the mean and the variance.
- If a sequence of pixels (with some tolerance for error) are further than a standard deviation from the mean, then declare that to be a car.
- Works with stationary vehicles, as it is memoryless.

Visual results

Department of Electrical and Computer Engineering

Density and interval

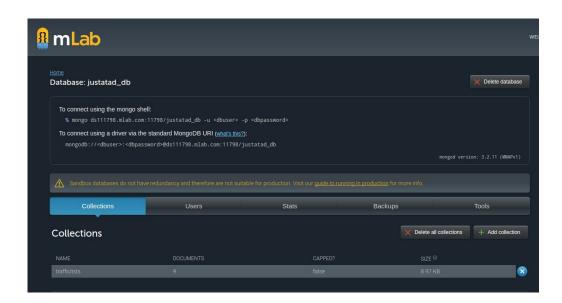
Density: Per lane, density is


pixels belonging to detected car contours 720 pixels per scan

Interval spacing: Interval spacing can be described by

Given two adjacent cars, c_x and c_y , where T_x and T_y are the adjacent thresholds of those cars,

$$I = (T_x - T_y) \times \frac{h * 0.665}{480}$$


Density Graphs

Frame number

Data Server

- Server receives processed data (Density, Interval)
- Displays data on web page

Data Server Implementation

- Remove as much load from Raspberry Pi as possible for image processing
- Database hosted on cloud (mongolab)
 - Deployed on AWS (Reliable, free up to 500 MB)
 - Database visualization
- mongoDB
 - JSON documents allow for varying structure
 - Flexible (dynamic schemas)

Web App UI

 MEAN (MongoDB, Express, Angular, NodeJS) Stack web application to query database

Features:

- Search for specified density/interval
- Sort by increasing/decreasing order by clicking density, interva or time headers
- Export data as CSV
- Automatically update (poll every
- X seconds, currently 5)
- Infinite table scrolling

Just a T.A.D. Database

Density				
liter by Interval:				
Interval				
Density	Interval	Created At	Actions	
0.18958333333333333	6	3/8/17 12:42 AM	Edit Delete	
0.1875	8	3/8/17 12:42 AM	Edit Delete	
0.16875	6	3/8/17 12:42 AM	Edit Delete	
0.12291666666666666	7	3/8/17 12:43 AM	Edit Delete	
0.24375	7	3/8/17 12:43 AM	Edit Delete	

3G Dongle

- Acquired 3G subscription
- Installed Drivers
- Fixed Hot Plugging
- Allowed for Device Switching

Current Pricing - 3DR Iris+

Drone	\$598
Camera	\$15
Raspberry Pi	\$50 \$34 \$25
3G Dongle	
3G Subscription	
FAA Registration	\$5
Raspberry Pi Battery	\$20
USB Cord	\$5
Total (with drone)	\$752
Total (without drone)	\$154

Demo

- Image processing on own test images provided by test flight
- Sending of data to server via WiFi
- Server refreshing to display new data within 10 seconds

Thank You!

Questions?

Department of Electrical and Computer Engineering

SDP17 - **TAD** 18